The Big Data & Integration Summit was a Success

he Big Data & Integration Summit was a success and our presentations are now available to the public for viewing. http://ow.ly/q64hz

Advertisements

Pitney Bowes Spectrum: Future-Proofing MDM, by Julie Hunt

“Data is the most valuable asset of any business and is the foundation for building lifetime customer relationships.” Which means that accuracy of the data is mission critical to building strong healthy relationships with customers. Julie Hunt’s blog post on Hub Design Magazine  “Pitney Bowes Spectrum Future Proofing” provides keen insight to how a 93-year-old company uses master data management to innovate for the future.

 

Hub Designs Magazine

A briefing by Pitney Bowes Software for the Hub Designs MDM Think Tank

View original post 1,688 more words

David Linthicum’s Data Integration Predictions for 2013

David Linthicum recently made 3 Data Integration Predictions for 2013 in his blog post on Pervasive Data Integration blog.  As a CEO whose business it is to help IT organizations get the most our their data, I concur with Linthicum’s predictions.

Whether you’re tired of hearing about “Big Data” or not, it’s here to stay. And the data will only get bigger and more complex. That means companies have to create business processes as well as IT processes that enable them to manage and integrate that data as it grows. Otherwise, far too much of the organizations resources will be spent on trying to manage the unmanageable  and not on their core business.

With government requirements for healthcare organizations to convert their data from flat files to 837 EDI files and corporations looking to increase their “Business Intelligence” (BI) for better decision-making, the Cloud will continue to drive IT teams to integrate data that’s on premise to the cloud. We see many customers moving to a hybrid combination of Cloud and on-premise. As Linthicum says, “It’s a certainty that data integration will become more important as the years progress.”

 

Three Most Likely Culprits for Data Quality Problems

Few things get better with time.  Without careful attention your data certainly won’t be one of them.

For most organizations, a love/hate relationship exists with their data.  We love that we can draw together information from various systems and use it to see a picture of how effective we’re being. We hate how difficult it is to move and maintain that information.

Recently, I’ve been working with a large organization that is making changes to its data integration infrastructure.  As part of the project, we’re reviewing how data moves into the organization and through multiple core business systems.  It’s been remarkable how many times the data is touched and the potential negative impact this whole cycle has on data quality.

Through identifying actual problem areas we’ve come across some now familiar culprits:

  1. Intake of information.  Often all the data isn’t loaded. The risk is that we don’t get everything, and it reduces the quality of what we have.
  2. Cyclic miscommunication between systems.  Dependencies and the system strain associated with moving large amounts of data in and out result in periodically missing a transfer.  One process gets backed up or breaks and the delays snowball.
  3. Complexity of processes.  At some point in every process, business rules get inserted to make decisions on how and where the data belongs.  Knowledgeable IT staffers are asked to create complex processes that are very difficult to test.

We see these same problem areas to varying degrees with most of our larger clients.  Data is certainly difficult to handle – that’s not a new idea.  But what is the collected result of this difficulty?

The quality of the information you use to run your business depreciates steadily over time. Given time and complexity the quality of your data will decrease.

External factors can add fuel to the fire.  If some of this data is about people (and some of it surely is), then there’s a silent but significant change going on external to your organization.  People are constantly in flux – moving, changing jobs, getting married, etc. – all of these activities are bad for the information you house about them.  Even in a short amount of time you know less than you did initially.

What’s to be done? How do you earn top marks for clean data?

A+-Grade

Ideally, the solution is to examine your data handling processes and look for problem areas.  Is your organization using the best tools to do the job?  While this is the best approach, it can be overwhelming.  At some point this just has to be done and the longer you wait the more difficult the mess will be to unravel.

At the other extreme you can ignore the problem and treat the symptoms.  While this seems like a bad idea for the long haul (it is), it can be very cost efficient and give the organization a significant lift.  Taking a look at the data where it’s being used and identifying missing or bad data is the first step.   Once you see the troubles then solutions become possible.

Data is a corporate asset.  It requires maintenance and it depreciates over time.  Like everything else you do, recognizing the problem is the first step to a solution.