The Big Data & Integration Summit was a Success

he Big Data & Integration Summit was a success and our presentations are now available to the public for viewing. http://ow.ly/q64hz

Advertisements

Pitney Bowes Spectrum: Future-Proofing MDM, by Julie Hunt

“Data is the most valuable asset of any business and is the foundation for building lifetime customer relationships.” Which means that accuracy of the data is mission critical to building strong healthy relationships with customers. Julie Hunt’s blog post on Hub Design Magazine  “Pitney Bowes Spectrum Future Proofing” provides keen insight to how a 93-year-old company uses master data management to innovate for the future.

 

Hub Designs Magazine

A briefing by Pitney Bowes Software for the Hub Designs MDM Think Tank

View original post 1,688 more words

Avoid Data Quality Pitfalls

If you haven’t experienced the frustration of trying to wade through duplicate and incorrect data, you’re one of the very few. Dirty data clogs up our databases, integration projects and creates obstacles to getting the information we need from the data. It can be like trying to paddling through a sea of junk.

The value of our data is providing reporting that is accurate and business intelligence that enable good business decisions. Good data governance is critical to successful business as well as meeting compliance requirements.

Image

So how do we avoid the pitfalls of poor data quality?

Perform quality assurance activities for each step of the process. Data quality results from frequent and ongoing efforts to reduce duplication and update information. If that sounds like a daunting task, remember that using the right tools can save substantial time and money, as well as create better results.

Take the time to set clear and consistent rules for setting up your data. If you inherited a database, then you can still update the governance to improve your data quality.

How to update data governance?

Recommendation: Updating data governance will almost always require new code segments being added to existing data import/scrub/validation processes.  A side effect of adding new code segments is a “cleanup”.  When code is updated to promote data governance, it is usually only applied to new data entering the system.  What about the data that was in the system prior to the new data governance code?  We want all the new data governance rules to hit new data as well as existing data.  You’ll need build the new code segments into separate processes for (hopefully) a one-time cleanup of the existing data.  Applying the updated data governance code in conjunction with executing the “cleanup” will bring data governance current, update existing data, and maintain a uniform dataset.

Which are the most important things to update?

  • Translation Tables
  • Stored Procedures
  • Database Views
  • Validation Lookups, Tables, and Rules

GIGO – garbage in = garbage out. Rid your data of the garbage early and avoid a massive clean up later. The C-suite appreciates that you’ll run more efficient projects and processes as well.

When Profiling Is A Good Thing

We all know the kind of profiling that is completely unacceptable and that’s not what I’m talking about here. I neither condone nor practice any kind of socially unacceptable profiling. But there IS one type of profiling that I strongly recommend: Data Profiling. Especially before you migrate your data.

If you think that sounds like a luxury you don’t have the time to fit into your project’s schedule, consider this: Bloor Research conducted a study and found that the data migration projects that used data profiling best practices were significantly more likely (72% compared to 52%) to came in on time and on budget. That’s big difference and there are a lot more benefits organizations realize when they use data profiling in their projects.

Data Profiling enables better regulatory compliance, more efficient master data management and better data governance. It all goes back to the old adage that “You have to measure what you want to manage.” Profiling data is the first step in measuring how good the quality of your data is before you migrate or integrate it. It allows monitoring the quality of the data throughout the life of the data. Data deteriorates at around 1.25-1.5% per month. That adds up to a lot of bad data over the course of a year or two. The lower your data quality is, the lower your process and project efficiencies will be. No one wants that. Download the Bloor Research “Data Profiling – The Business Case” white paper and learn more about the results of this study.

White Paper Download